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Abstract. There is no direct and exact relation between the electron charge density, p ( r ) ,  
and electron momentum density, y ( p ) .  Two approximate methods for transforming from 
p ( r )  to y ( p )  developed in the literature are briefly outlined, and these two methods are 
applied to metallic AI, V and Cu. The results are compared with each other and with 
experiment. 

It is well known that in the case of the independent-particle approximation (IPA),  the 
electron charge density (ECD), p(r ) ,  of an N-particle system is obtained from the position- 
space single-particle wavefunctions Y j ( r )  by using the relation 

Similarly, the electron momentum density (EMD), y ( p ) ,  can be obtained from 
occ 

Y ( P )  = c lu),(P>l* (2) 
I 

where the q , ( p )  are the momentum-space single-particle wavefunctions. The two 
wavefunctions Y,(r) and q , ( p )  are related to each other by the Dirac-Fourier transform 
(in atomic units) 

q, ( p )  = ( 2 ~ ) ~ ~ ’ ~  Yj (r)  exp( -ip * r )  dr. J (3) 

The usual practice followed in the calculation of the EMD, y ( p ) ,  is to obtain first the 
position-space wavefunctions Y, in the IPA and then to calculate the corresponding 
momentum-space wavefunctions qjusing (3). y ( p ) ,  is then obtained from (2). y ( p )  thus 
determined forms the physical quantity of interest studied through the measurement of 
photon Compton profiles (CP) (Williams 1977, Cooper 1985): 

J d q )  = J Y ( P P ( 4  - P * f i )  dP (4) 

where i2 is a unit vector along the direction of the scattering vector ( k Z  - k l ) ,  k2 and k l  
being the wavevectors of the scattered andincident photon, respectively, in the Compton 
scattering process. 
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There does not appear to be a method of obtaining y ( p )  from p(r) (or p(r) from 
y ( p ) )  accurately by using an exact formula. However, some recent calculations have 
demonstrated how y ( p )  can be estimated directly from knowledge of the ECD, p(r), and 
these calculations have provided results that are in satisfactory agreement with the 
experimental CP data for atoms (Gadre and Pathak 1981, Parr et a1 1986), molecules 
(Pathak et a1 1984, Parr et a1 1986) and metals (Mishra and Singru 1986,1987). 

It is well known from density functional theory (DFT) that given the ground-state 
ECD, p(r),  the external potential V(r)  is uniquely determined (Hohenberg and Kohn 
1964). The ground-state wavefunction Y is thus also uniquely determined provided the 
ground state is non-degenerate, which is usually the case. This wavefunction, Y, then, 
in turn uniquely determines y ( p )  through a uniquely determined q. Thus given any 
ground-state ECD, p(r) ,  it should be possible, in principle, to obtain corresponding y ( p ) .  
However, as pointed out before, no such direct and exact relation transformingp(r) into 
y ( p )  (or vice versa) is known. Recently we have applied two methods to transform from 
ECD to EMD in metals (Mishra and Singru 1986,1987). Although these methods lead us 
to spherically symmetric EMD, they provide inforrnation that is useful in many cases. We 
give below a brief outline of these two approximate methods for transformation from 
ECD to EMD. The theoretical results of these methods have been compared with exper- 
iment and with each other for the first time and it has been shown that they provide 
reasonably good estimates of EMD derived from ECD. 

One such approximate procedure for carrying out the above transformation is based 
on quasi-classical phase-space considerations and is named in the literature after its 
originators (Burkhardt 1936, Konya 1949, Coulson and March 1950). This method was 
later revived and developed by Gadre and Pathak (1981) whose group later applied it to 
several systems, and hence we shall refer to it as the BKCM-GP method. This method is 
exact only within the Thomas-Fermi theory. 

The BKCM-GP method starts with a function Po(r) which is the maximum momentum 
that an electron can have while at the position rand  is related to the density p(r) at r by 

and the total EMD is then obtained by adding the contributions from different regions in 
the position space. It has been shown by Gadre and Pathak (1981) that for the case of 
the ECD, p(r) ,  decreasing monotonically with r ,  one can write the direct and reverse 
transformations as 

p(r) = P;(r)/3n2 (7) 

where R is the inverse of Po. 
The relations (6) and (7) have been used by Gadre and Pathak (1981) to transform 

from the ECD, p(r), to the EMD, y ( p ) ,  in the atomic systems Li, Be, B, C, N, 0, F and 
Ne. These authors calculated the CP and the values of kinetic energy ( p 2 / 2 ) ,  J ( 0 )  and qo.5 
for these atoms and compared these results with experiment. This comparison showed 
that their procedure yielded reasonable estimates of various quantities. In a subsequent 
paper (Gadre et a1 1983a) the BKCM-GP procedure for carrying out the direct trans- 
formation p(r)  + y ( p )  was shown to be identical to the locally averaged method of Lam 
and Platzman (1974). Similarly the scope of the BKCM-GP procedure was extended to 
molecular densities (Pathak et a1 1984). Later it was shown that the introduction of 
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energy constraints improved the agreement between the BKCM-GP theory and exper- 
iment (Gadre et a1 1983b). 

The BKCM-GP procedure has recently been extended to metallic systems by Mishra 
and Singru (1986). These authors have obtained y ( p )  from the spherically symmetric 
p( r )  calculated for metals by Moruzzi et a1 (1978) using band-structure methods. The 
results of y ( p )  so obtained were used to calculate the cpJ(q), and the expectation values 
(p“ )  in metallic Li, Na, Al, Sc, V, Ti, Fe, Ni and Cu, and the agreement with experiment 
has been found to be satisfactory. 

We now outline another method to obtain the EMD, y ( p ) ,  from the ECD, p ( r ) ,  via a 
phase-space function, f(r, p ) ,  defined in the joint position and momentum space. This 
approach is based on the rigorous phase-space formalism, which is described in detail in 
the literature (Hillery et a1 1984, Balazs and Jennings 1984). The phase-space function, 
f(r, p ) ,  is also known as Wigner’s function and it obeys the following properties for a 
one-particle Wigner function: 

(9) 

I f ( r J4  d r  = (10) 

( T )  = 1 ( p 2 / 2 m ) f , ( r , p )  drdp .  

The expectation value of the kinetic energy operator is obtained from 

(11) 

It is observed from the above that the EMD, y ( p )  can be obtained from (10) if we 
knowf(r, p ) .  Parr et a1 (1986) combined the maximum-entropy principle with the above 
approach to determine f(r, p )  in atoms and molecules, so that the properties in momen- 
tum space could be calculated in such a way as to obtain good agreement with experiment. 

Following a similar approach we can obtain Wigner’s function in metals (Mishra and 
Singru 1987) 

f@, P) = (3p/4Jtt)3’2p(r) exp(-3pp2/4t) (12) 
where p = p( r )  is the ECD and t = t(r) is kinetic energy density given in r-space by 

where the second term is the Weizacker correction term. We point out here that in our 
previous report we used a numerical coefficient of 4 in the second term of (13). It has 
been pointed out in the literature (Kirznits 1957, March 1983) that this numerical 
coefficient should really be h for better accuracy. We have therefore repeated our 
calculations using the numerical coefficient h in (13). We find that a value of h for the 
coefficient provides better agreement with the total kinetic energy. The starting point 
of our calculations for metals was the ECD, p( r ) ,  reported by Moruzzi et a1 (1978) from 
which t(r) andf(r ,p) were calculated. y ( p )  was obtained from (15) using the f(r ,p) so 
obtained. Theoretical values of the CP, and (p” )  obtained from these calculations, have 
been compared with experiment and found to show satisfactory agreement (Mishra and 
Singru 1987). 
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Figure 1. A comparison of various results for CP 
for AI, V and Cu. Theoretical results obtained 
using the BKCM-GP method are shown by circles 
while those found using Wigner’s function are 
shown by full curves. The broken curves show 
experimental data for AI from Pattison eta1 (1974) 
and for V and Cu from Paakkari et a1 (1975). 
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To illustrate the degree of success obtained using the above two methods in metals 
we show in figure 1 a comparison between the CP obtained for metallic Al, V and Cu 
from (i) the BKCM-GP procedure, (ii) Wigner’s phase-space function and (iii) experiment. 
These results are encouraging and they suggest that such methods could also have useful 
applications in the theory of positron annihilation. Such work is now in progress. 
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